Domino Hardware Tiers define Kubernetes requests and limits and link them to specific node pools. Domino recommends the following best practices.
-
Account for overhead
-
Isolate workloads and users using node pools
-
Set resource requests and limits to the same values
When designing hardware tiers, consider account what resources will be available on a given node when Domino submits your workload for execution. Not all physical memory and CPU cores of your node will be available due to system overhead.
Consider the following overhead components:
-
Kubernetes management overhead
-
Domino daemon-set overhead
-
Domino execution sidecar overhead
Kubernetes management overhead
Kubernetes typically reserves a portion of each node’s capacity for daemons and pods that are required to for Kubernetes itself. The amount of reserved resources usually scales with the size of the node, and also depends on the Kubernetes provider or distribution.
Click the following links to see information about reserved resources for cloud-provider managed Kubernetes offerings:
The best way to understand the available resources for your instance is to check one of your compute nodes with the kubectl describe nodes
command and then look for the Allocatable
section of the output.
It will show the memory and CPU available for Domino.
Domino daemon-set overhead
Domino runs a set of management pods that reside on each of the compute nodes. These are used for things like log aggregation, monitoring, and environment image caching.
The overhead of these daemon-sets is roughly 0.5 CPU cores and 0.5 Gi RAM. This overhead is taken from the allocatable resources on the node.
Domino execution overhead
Lastly, for each Domino execution, there are a set of supporting containers in the execution pod that manage authentication, handle request routing, loading files, and installing dependencies. These supporting containers make CPU and memory requests that Kubernetes takes into account when scheduling workspace, job, and app pods.
The supporting container for each execution overhead is roughly 1 CPU core and 1.5 GiB RAM. This is configurable and might vary for your specific deployment.
Example
Consider an m5.2xlarge
EC2 node with raw capacity of 8 CPU cores and 32 GiB of RAM.
When used as part of an EKS cluster, the node reports the following allocatable capacity of ~27GiB of RAM and 7910m CPU cores.
Capacity:
attachable-volumes-aws-ebs: 25
cpu: 8
ephemeral-storage: 104845292Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 32120476Ki
pods: 58
Allocatable:
attachable-volumes-aws-ebs: 25
cpu: 7910m
ephemeral-storage: 95551679124
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 28372636Ki
pods: 58
Also, conservatively account for 500m CPU and 0.5GiB of RAM for the Domino and EKS daemons.
Lastly, for a single execution add 1000m CPU and 1.5GiB RAM for sidecars, and you are left with roughly 6410m CPU and 25GiB RAM that you can use for a single large hardware tier.
If you want to partition the node into smaller hardware tiers, you must account for the sidecar overhear for every execution that you want to co-locate.
As a general rule, larger nodes allow for more flexibility as Kubernetes will take care of efficiently packing your executions onto the available capacity.
To which pods are running on a specific node, go to the Infrastructure admin page and click the name of the node. In the following image, there is a box around the execution pods. The other pods handle logging, caching, and other services.
Node pools are defined by labels added to nodes in a specific format:
dominodatalab.com/node-pool=<your-node-pool>
.
In the hardware tier form, you must include your-node-pool
.
You can name a node pool anything you like, but Domino recommends naming them something meaningful given the intended use.
Domino typically comes pre-configured with default
and default-gpu
node pools, with the assumption that most user executions will run on nodes in one of those pools.
As your compute needs become more sophisticated, you might want to keep certain users separate from one another or provide specialized hardware to certain groups of users.
So if there’s a data science team in New York City that needs a specific GPU machine that other teams don’t need, you can use the following label for the appropriate nodes:
dominodatalab.com/node-pool=nyc-ds-gpu
.
In the hardware tier form, you would specify nyc-ds-gpu
.
To ensure only that team has access to those machines, create a NYC
organization, add the correct users to the organization, and give that organization access to the new hardware tier that uses the nyc-ds-gpu
node pool label.
With Kubernetes, resource limits must be >= resource requests. So if your memory request is 16 GiB, your limit must be >= 16 GiB. But while setting a request > limit can be useful. there are cases where allowing bursts of CPU or memory can be useful, this is also dangerous. Kubernetes might evict a pod using more resources than initially requested. For Domino workspaces or jobs, this would cause the execution to be terminated.
For this reason, Domino recommends setting memory and CPU requests equal to limits. In this case, Python and R cannot allocate more memory than the limit, and execution pods will not be evicted.
On the other hand, if the limit is higher than the request, a user can use resources that another user’s execution pod must be able to access. This is the "noisy neighbor" problem that you might have experienced in other multi-user environments. But instead of allowing the noisy neighbor to degrade performance for other pods on the node, Kubernetes will evict offending pod when necessary to free up resources.
User data on disk will not be lost, because Domino stores user data on a persistent volume that can be reused. But anything in memory will be lost and the execution will have to be restarted.